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he vision to transform mathematics
classrooms into learning communities
in which students engage in mathemati-
cal discourse is a remarkable hallmark
of the current movement, led by the
National Council of Teachers of Mathematics, to
reform mathematics education (NCTM 1991,
2000). According to NCTM, “the discourse of a
classroom—the ways of representing, thinking,
talking, agreeing and disagreeing—is central to
what students learn about mathematics as a do-
main of human inquiry with characteristic ways of
knowing” (NCTM 1991, p. 34). Indeed, both the
Principles and Standards for School Mathematics
(2000) and Professional Standards for Teaching
Mathematics (1991) recommend that teachers of
mathematics provide opportunities for children of
all ages to participate in mathematical discourse.
One popular interpretation of this recommenda-
tion has been that teachers allow students to share
their ideas in class in order to increase their inter-
est and participation in learning (Lampert and
Blunk 1998). Although this interpretation is not in-
accurate, it provides a narrow view of what the
Standards mean by the concept of “classroom dis-
course” and what they envision it can accomplish.
Explicit in both sets of NCTM Standards is the link
between discourse and a learning community, that



is, a classroom environment that embodies a cul-
ture of learning in which everyone is involved in a
collective effort of understanding (Bielaczyc and
Collins 1999; Mercer, Wegerif, and Dawes 1999).
Much emphasis is placed on the value of classroom
discourse because of its perceived power in foster-
ing a learning community. Conversely, the creation
of a learning community is deemed important be-
cause of its potential for generating productive
mathematical dialogues among learners. This cru-
cial link, although frequently overlooked, provides
a substantially richer context for understanding not
only why students should be encouraged to share
their ideas but also how their ideas should be
treated and used in class.

In this article, we will argue that the discourse of
a learning community as advocated by the Stan-
dards differs significantly not only in structure but
also in content, purpose, and product from the type
of dialogues commonly produced in mathematics
classrooms. We will use vignettes from two high
school geometry classrooms to illustrate these dif-
ferences and to discuss multiple ways in which
these differences affect the act of teaching and the
quality of students’ mathematical work.

CHARACTERIZING DISCOURSE OF A
LEARNING COMMUNITY
Discourse is commonly thought of as a simple con-
versational exchange of ideas or relaxed discussions
among individuals. Unlike casual conversation,
however, discourse requires a combination of both
reflection and action. That is, during the exchange
of ideas, participants attempt both to gain insight
into the conceptions of others and to influence
them (NCTM 1991). Burbules (1993), pointing at
this difference, characterized discourse as a com-
municative relationship between equals that re-
quires participation, commitment, and reciprocity.
Participation means there are opportunities in the
dialogue for the individuals to become engaged,
question others, try out new ideas, and hear diverse
points of view. Commitment implies that the partic-
ipants will be open to hearing the positions of other
speakers. Reciprocity means a willingness to engage
in an equilateral exchange with others. In this
mode, the structure of discourse is multidirectional
and responsive. The content of the dialogues is dy-
namic, connected, and unscripted. The purpose of
the dialogue is to participate and engage others in
deep inquiry into the meaning of things. This pos-
ture leads to significant changes in how individuals
view the topic under consideration and their rela-
tionships with it.

Rich dialogue occurs when participants are
ready to consider the possibility of different inter-
pretations and meanings, when they analyze how

their own ideas differ from those of their conversa-
tional partners, and when they allow themselves to
consider the ways in which their prior understand-
ings might be distorted. Thus, a major product of
discourse is the transformation of the participants.
The Standards promote and support this type of
transformational discourse. Not all classroom dia-
logues share these features of discourse or lead to
the same outcomes.

STRUCTURE, CONTENT, PURPOSE, AND
PRODUCT OF DISCOURSE IN DIFFERENT
CLASSROOMS

Structure of Discourse

In a majority of mathematics classrooms, discus-
sions frequently follow a traditional format: The
teacher initiates a dialogue by posing a question,
and students either volunteer answers or are called
on by the teacher. The teacher reacts to the stu-
dents’ ideas by providing corrective feedback. Ulti-
mately, the teacher shares or approves of a method
that she or he considers correct. The students take
note of these answers and are expected to reference
them in future contexts. This type of classroom dis-
cussion is not reciprocal, since the teacher deter-
mines the quality and quantity of student participa-
tion and contributions. In fact, the teacher decides
which student ideas should be pursued or aban-
doned. In contrast, in a learning community, stu-
dent answers are used to extend instruction
(NCTM 1991). The teacher allows students to par-
ticipate freely in dialogues and to make decisions
about adequacy and efficiency of ideas that their
peers offer. The discourse of this class is multidirec-
tional and responsive. The teacher’s contribution to
classroom discourse is to intensify the mathemati-
cal substance of the group discussions rather than
to reduce the cognitive load of tasks on which stu-
dents work.

Content of Discourse

In traditional classroom settings, the content of dis-
course is predictable and polished. It is focused on
helping students arrive at answers already ap-
proved by authorities, such as the teacher and the
textbook. In addition, the pressure that comes from
following timelines for curriculum coverage and
keeping pace with the order in which mathematical
topics are introduced in textbooks can impinge
upon the teacher’s time and thus compromise the
quality of students’ mathematical work. In the
course of one single class session, for example, stu-
dents may tackle multiple problems, but they may
not be asked to examine connections between these
problems and their solutions or even between the
current problems and previous work. Even when
these connections are discussed, they are frequently
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shared with students through carefully designed
teacher presentations with little authentic contribu-
tion by learners. In contrast, discourse within a
learning community focuses on seeking connec-
tions among ideas and distinguishing valid from in-
valid arguments (NCTM 1991). Individuals come
together with mutual understanding and shared in-
terest to construct knowledge through dialogues
that are both intellectually challenging and time in-
tensive. The content of student dialogue is shaped
by the knowledge they gain from their interactions.
Therefore, the direction or destination of student
discourse is not always predictable. The teacher
builds on student ideas to design curriculum and
instruction that advance their understanding of
mathematics, rather than superimposing a predeter-
mined structure on their thinking.

Purpose of Discourse

The primary purpose of discourse in a traditional
classroom is to transfer information. The teacher
depends on dialogues with students to monitor their
progress. She relies on student input (or lack
thereof) to decide on her next teaching move:
whether to review certain topics, provide additional
examples, give additional assignments, or proceed
with covering the next topic. In turn, students listen
to the teacher and record the information she pro-
vides, trusting that the shared information is valu-
able. These outcomes of classroom dialogues cer-
tainly are important; but the ultimate goal of this
type of discourse is to standardize students’ think-
ing. In contrast, the purpose of discourse within a
learning community is to assist both the teacher and
the students in learning more about the subject. Stu-
dent conversation is focused on exploring and ex-
plaining mathematical ideas and their connections.
The discourse of the class is a sincere effort to estab-
lish new knowledge, seek new understanding, and
inquire (NCTM 1991). Assessing student under-
standing in light of their discourse is only one of
many purposes that classroom dialogues serve.

Product of Discourse

The primary outcome of discourse in traditional
mathematics classrooms is the dissemination of
facts about the discipline and those mathematical
techniques that either the teacher or the textbook
characterizes as efficient and elegant. The teacher
carefully designs and delivers lectures to ensure
that mathematical truths are clearly communicated
with students. This form of knowledge sharing is
not transformational, since it may not lead to sub-
stantial change in the way students or teachers
think about mathematics. In contrast, discourse of
a learning community involves students in dia-
logues in order to construct, negotiate, and verify
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mathematical ideas (Cobb and Bauersfeld 1995).
The product of discourse is the development of
shared understandings, new insights, and a deeper
analysis of mathematics on the part of both the
teacher and the student (Lampert and Blunk
1998). While the teacher is a participant in dis-
course, he or she is also the most knowledgeable
mathematician in the group and simultaneously
carries the responsibility to share needed conven-
tional knowledge of the discipline with students
and to help them synthesize ideas. Through careful
and intentional interventions, she ensures that stu-
dents indeed reach these shared understandings
and insights.

TWO EXAMPLES: THE MEDIAN PROBLEM
Let us illustrate the differences noted above by con-
sidering an example of each type of discussion in
two mathematics classrooms. The teaching episodes
we describe in this section come from different
geometry classrooms. The teachers, Tom and Lyle,
taught in the same school and the student popula-
tions were consistent across both sections. Al-
though both Tom and Lyle regularly encouraged
students to share their ideas in class, Lyle had tried
from the start of the academic year to create a
learning community in which collaborative dis-
course guided the unfolding of mathematics as well
as student learning in class. Tom, however, did not
share this particular instructional goal. He used
class discussions as a means to engage students in
his lessons and to monitor their progress.

The following problem was the focus of work in
both classrooms:

Is this statement true or false? “In an isosceles
triangle a median divides the triangle into two
regions of equal area.”

Students had been given the problem as a home-
work assignment and had been asked to come to
class prepared to share their answers. In both
classes, the teachers initiated the classroom dia-
logues, asking for student volunteers to share solu-
tions. Discussion in both classes began as the first
student volunteer in each section presented an
identical solution to the problem. The subsequent
mathematical interactions of the group and the out-
comes of discussions were influenced by how this
initial solution was treated and used by the teacher
to motivate student learning.

Section 1: Tom’s class

Tom reads the problem to the group and asks if stu-
dents had worked on the problem. None of the students
volunteers to show his or her work, so Tom encourages
them to participate.



Tom: I don’t want to just show you how to solve
this problem. We need a volunteer. It doesn’t mat-
ter if you have not solved it completely.

One of the students, Kevin, volunteers to share his
work. He instructs Tom to draw a triangle on the
board and to label its vertices. Tom asks Kevin to come
to the board to present his work. Kevin produces a
drawing and explains it [see fig. 1a].

Kevin: I said when we fold the triangle about the
median AM, the areas of these two regions (points at
triangles ABM, and ACM,) match, so they are equal.

Tom looks at the group; but since no one reacts to
Kevin’s approach, he addresses Kevin.

Tom: What did you assume about the triangle? The
problem says “isosceles triangles.” Which of the
sides are equal?

Kevin: Sides AB, AC, and BC.

Tom: So, what type of triangle is it? If all three
sides are equal, what kind of triangle is it?

A student shouts out that it is equilateral.

Tom (addressing the group): You need to remember
that not all isosceles triangles are equilateral. The
problem said “isosceles triangle.”

Evan: So your method does not work? Your
method only works when it is equilateral?

Kevin (responding to Evan): If I changed it to just
sides AB and AC equal then we can still fold it and
they match.

Several students nod their heads in agreement. One
student holds up a piece of paper on which she had
drawn an isosceles triangle folded along the median
AM, to illustrate Kevin’s reasoning.

Tom: This folding method shows the two triangles
are equal only for this case (pointing at the median
AM,), but it doesn’t work when we consider an-
other median, say BM,, because in this case the tri-
angles don’t match. Do you see my point? Evan,
did I answer your question?

Evan: Yes, I see why he is wrong.

Solmaz: I drew all three medians and tried to see if
the triangles, the six triangles inside, ended up
being equal, but I did not finish.

Tom: Okay, does anyone else have a solution?
Nassim: I don’t know how we can find the areas
without knowing the size of the triangle.

Tom: Do we need specific measurements to verify
this statement?

Nassim does not respond.

M,

(a) (b)

Fig. 1 Initial models used in Tom's class

Sara: I said when we draw a median we create two
triangles in the original triangle. The bases of these
two triangles are equal because of the property of
midpoint, and then they share the same altitude, so
if we use area = 1/2(height - base), then we get the
same areas.

Tom draws a triangle to illustrate Sara’s argument.

Tom: Sara says if we use the definition of the me-
dian and consider the common altitude of triangles
ABM, and BCM,, then we have equal areas [see fig.
1b]. This is really slick: a generalized argument that
applies to any of the medians in the triangle, right?
Do you see it?

A student jokingly refers to Sara as the “brains” and
asks how she came up with the idea. Sara explains
that the hardest thing for her was noticing that trian-
gles ABM, and BCM, shared the same altitude. Tom
asks students to finish recording Sara’s proof. Students
are then advised to move on to the next homework
problem.

Section 2: Lyle’s class

Lyle reads the problem to the group and asks for stu-
dents to share their solutions. Since none of the stu-
dents volunteers to show his or her work, Lyle reads the
problem aloud again. He asks how many people had
worked on the problem. With the exception of two stu-
dents, everyone raises a hand.

Lyle: So almost everyone worked on the problem,
but no one is volunteering!

Naomi: I don’t think my answer is what you want,
like proving—Tlike real proving.

She illustrates the same folding approach that Kevin
had shown in Tom’s class.

Lyle (addressing the class): What do you think? Is
this demonstration enough to believe that any of
the medians in this triangle divides the triangle into
two regions of equal area?
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Samantha: Are you saying sides AB and AC are
equal?

Naomi (elaborating on her argument): Yes, 1 said it
was okay for this median (pointing at AM,), the one
that cuts the unequal side, but it is not true for the
other ones. Like when I drew BM,, the two trian-
gles did not match [see fig. 2].

Meri: But the problem did not say that they had to
be congruent; it said that their areas had to be
equal. Two triangles can have different measure-
ments but still have the same area.

Josh: But if ABC is an equilateral triangle then all
the triangles are congruent.

Meri (responding to Josh): Yes, but this problem did
not say that they HAD to be congruent! It said that
they had to have the same area!

Everyone is silent for almost a minute. Lyle addresses
the group again.

Lyle: These are both excellent comments. Josh says
in an equilateral triangle, each median divides the
triangle into two congruent triangles. Meri says
that in our original statement it does not matter if
the triangles are congruent—all we need to check is
if their areas are equal. What do you think?
Samantha: I think they are both right. (Several
other students nod their heads in agreement). 1 was
talking to Noah about this. He can explain it better.
Will: I know what I did wrong. I thought they both
had to be congruent, so I said the statement was
wrong; but now that I listened to Meri, I think she

A
M,
B C
M,
Fig. 2 Naomi's picture
A
H
M, M, M,
c B ¢
G
®)

Fig. 3 Noah's model
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is right. Like, we can have a triangle with height
and base of 5 and 6, another one with height and
base of 10 and 3. They both have the same area but
they are not equal.

Noabh: I think Josh is right about all 6 triangles
being equal because here is what I did: I looked at
the triangle and one of its medians and saw that the
two triangles inside have the same altitude.

Lyle draws the altitude AH, perpendicular to side BC
as illustrated in figure 3a. Noah corrects Lyle.

Noah: No, those are not the ones I looked at (goes
to the board and produces fig. 3b). Then I said the
areas of ABM, and CBM, are the same. See, AM, =
CM, and BH is their common height. Here it really
does not matter which median we consider, it al-
ways gives us two triangles of equal area. See, I
could have looked at this other median (draws
CM,). Again, the altitude is the same for these two
(pointing at triangles CAM, and CBM,), their bases
are equal, so their areas are equal [see fig. 3b].
Hope: So what you are saying is that the statement
is true for all triangles. It does not matter what kind
of triangle we have, it does not matter if it is isosce-
les or not—because Noah’s argument did not de-
pend on the lengths of the sides of triangle ABC. So
we could use the same method to show the areas
would be equal in any triangle.

Noah: I guess you are right. I did not see that, but
it is right.

Lyle: Good! Let’s go back and see if there is a dif-
ferent way of looking at this problem. I am curious
to know how we might justify Naomi’s method.
Megan: Didn’t we show that in an isosceles trian-
gle the median is also the altitude? I mean the me-
dian that cuts the unequal side. So, with that we
know triangles ABM, and ACM, are congruent by
SSS congruency theorem.

Sounds of recognition arise from the group.

Jamie: When you drew those altitudes, AH and
M,G, I saw something. I thought, okay, the ratio of
the altitudes is 2 to 1, because the ratio of AC to
M,C is 2 to 1. So, since the altitude of BM,C is a
half of AH, the area of triangle BM,C is exactly a
half of the area of ABC, so that leaves only a half
for the area of triangle BM,C. So, they must be
equal.

Rosha: But Jamie, we don’t know the ratio of the
altitudes is 1/2. They may not be 1/2.

Jamie: I think it is 1/2 because M, is the midpoint
of side BC.

Lyle steps away from the board and appears to be
thinking about Jamie’s method. Several students ask if



Lyle could give them a hint on how to prove Jamie’s
proposition.

Lyle: I never considered proving it this way

He draws a line from M, parallel to BC. Jamie and
several others simultaneously shout “similar trian-
gles,” referencing their discussion of medial triangles
from two weeks earlier. [Earlier in the term, students
had considered the relationship between a triangle
and its medial triangle, formed by connecting mid-
points of its sides. At that time, the theorem stating
that a segment connecting the midpoints of two sides
of a triangle is parallel to the third side.]

Morgan: I think we can use this approach to show
Naomi’s folding method, because once we draw the
medial triangle then we can show that areas of the
triangles inside are equal. Like this. (Ske produces
fig. 4 to illustrate her point.)

Lyle advises students to get into small groups and re-
view the different procedures that were presented in
class. He instructs them to revisit each method and to
decide, first, if each of the suggested arguments was
complete and then, to refine each one if needed.

EXAMINING THE DISCOURSE OF THE TWO
CLASSROOMS

Despite the presence of student conversation in
both classrooms, there are substantial differences in
the structure, content, and products of mathemati-
cal discussions of the two sessions.

Structure of Discourse

In the first vignette, following the initial invitation
to share ideas, Tom explicitly controlled the class-
room dialogues; he determined who participated in
discussions, what information received attention,
how ideas were verified, and which of the student
contributions were used to assure that closure on
the problem was achieved. The direction of dia-
logue was, for the most part, from Tom to particu-
lar students. The extent of commitment that stu-
dents appeared to have made to discussions was to
share their work (if directly asked), nod their heads
in agreement, or to record the mathematical prod-
uct that was either presented by Tom or approved
by him (for instance, Sara’s method). Even when
Evan questioned the accuracy of Kevin’s method, it
was Tom who responded to Evan’s question rather
than allowing Kevin to defend his approach or elab-
orate on it. Once Tom approved Sara’s proof, the
discussion quickly ended. In his class the students
were verbally engaged in discussions, but they were
inherently an audience for the mathematics that
Tom displayed.

Fig. 4 Morgan's visual representation of Solmaz's conjecture

In Lyle’s class, peer discussion seemed more au-
tonomous. After Lyle’s initial invitation, students
chose to participate in the dialogue and were re-
sponsive not only to Lyle’s questions but to the
mathematical ideas that their peers shared in class.
The students addressed each other’s work directly
rather than filtering their comments through Lyle.
Reciprocity to the shared ideas was evident as stu-
dents changed their own solutions in light of peer
comments. Lyle explicitly influenced the content
and flow of discourse by repeating student ideas,
noting the importance of particular comments, ask-
ing students to restate peers’ propositions, and even
choosing to remain silent when confronted with
certain questions. His interventions promoted and
supported student discussions.

Content of Discourse

In Tom’s class, the content of discourse was chan-
neled to direct students toward one answer. In fact,
when Solmaz suggested her method for examining
the areas of six smaller triangles, potentially a very
productive approach, Tom did not pursue her idea.
Thus, her method did not receive attention from
her peers. Although Tom posed good questions, he
did not appear to expect students to pursue them.
The content of dialogue in Tom’s class was not
about finding connections among the various meth-
ods but on isolating those features that Tom consid-
ered valuable in arriving at the answer he consid-
ered correct. Students noted Tom’s explanations
and relied on him to determine the validity of their
peers’ ideas. Tom’s responses restricted the content
of student conversation, their exploration of the
problem, and what they gained from ideas posed by
different individuals.

In Lyle’s class, the content of discourse was
shaped by what students knew (their initial solu-
tions) and what they learned in the course of their
discussions. The classroom dialogue seemed to help
students transform their understanding of the prob-
lem and lead to a deeper analysis of methods they
could use to make sense of and solve the problem.
Although Lyle intentionally posed questions to
guide and structure students’ work, the content of
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the belief that they
as individuals are

understanding and
sharing mathematics

students’ discourse was not limited to answering
his questions. Notice also that students did not
reach immediate closure on the problem. Their
mathematical dialogue became increasingly more
refined as they developed new insights that af-
firmed or refuted their previous ideas. Lyle pro-
vided students with the time and the intellectual
space they needed to practice this process. Al-
though he contributed to classroom dialogues, his
interventions seemed to deepen students’ inquiry
rather than place closure on it.

Product of Discourse

Although Tom invited students to react to one an-
other, he did not insist that they critically analyze
each other’s work or try to understand their peers’
views. Students were not expected to challenge
mathematical ideas or to confront one another’s ar-
guments. Therefore, the worth of the information

that students
shared was deter-
Teachers need to help | iuedsoos by
Tom’s judgment.
students develop | mheproduct o dis

cussion in Tom’s
class was a correct
method for solving
one problem. In
the process, Tom
managed to re-
mind students of
some definitions.
He shared what he
considered to be
the limitations of
some of the meth-
ods that students
offered. The class discussion does not allow us to
deduce much about what students gained from the
dialogues that took place in class or whether they
reached a shared understanding of why some proce-
dures were right or wrong.

In Lyle’s class, student conversation focused on
exploring and explaining mathematical ideas and
their connections. Lyle participated in this dis-
course not only to monitor, assess, and guide stu-
dents but also to develop new insights about the
mathematics that his students presented and used.
As students tried to make sense of each other’s
ideas, their own understanding of the problem
seemed to evolve. As a result, their mathematical
work became more sophisticated. Students not only
shared their own solutions but also examined the
validity of different methods their peers or the
teacher offered. In the process, they influenced the
development of mathematics in the classroom and
the order in which it unfolded. Following the par-

responsible for
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ticular teaching episode we reported here, Lyle’s
students spent three additional class sessions dis-
cussing the various methods of their peers. In the
course of their analysis, they posed and solved
nearly fifteen different problems that addressed re-
lationships among medians, altitudes, and angle bi-
sectors of different triangles. These are significant
mathematical outcomes.

NURTURING THE DEVELOPMENT OF

A LEARNING COMMUNITY

Using student discussion in mathematics instruc-
tion is not a novelty in education. However, moti-
vating productive discourse to advance the devel-
opment of a learning community is certainly a
new educational vision. Implementing this vision
demands more than just allowing students to talk
in class; it requires engaging students in authentic
mathematical activities. Authentic mathematical
activity involves students’ adopting perspectives,
beliefs, values, and expectations consistent with
those of the mathematics community and using
those to analyze and discuss problem situations.
Students must become able to make and state
mathematical observations on their own, take
ownership of the thinking that must be done, and
break away from the belief, fostered by much of
the schooling process, that authority resides only
in books and teachers. Teachers need to help stu-
dents develop the belief that they as individuals
are responsible for understanding and sharing
mathematics. To do this, teachers can create con-
texts that allow for development of these perspec-
tives and beliefs by giving students more responsi-
bility for the mathematical context on which
classroom instruction is based (McClain and Cobb
2001). By providing students the opportunity to
work on open-ended problems instead of having
them simply search for a calculation to find an an-
swer, teachers can help students become more au-
tonomous in their use of mathematics. Moreover,
by insisting that peers work together to try to fig-
ure things out, teachers can influence students’
perceptions about their role in the classroom and
their expectations of peers.

Students do not automatically begin talking
about mathematics in meaningful ways simply be-
cause they are presented with good tasks and asked
to work and talk with each other (Lampert 2001).
Teachers also need to help students learn how to
talk with one another about mathematics in ways
that are coherent and respectful by pointing out
features of classroom conversations that are repre-
sentative of the type of discourse they desire and by
modeling for students those social and mathemati-
cal behaviors, including the norms of polite interac-
tion, that are crucial to productive functioning of a



learning community. To increase student sensitiv-
ity to what is being shared in class, teachers can
emphasize the need to listen to ideas and ask ques-
tions about peers’ propositions.

A critical consideration for all teachers is the in-
volvement of and learning by all students in class,
including those less mathematically advanced than
others. In a learning environment that depends
heavily on group discourse, teachers need to moder-
ate group interactions to ensure that all students
will have the opportunity to participate in and ben-
efit from discussions. By asking questions that en-
courage students to reflect on mathematics that
might have been implicit in their peers’ discussions
and by requiring students to verbalize what others
have said and what they might have meant, teach-
ers can make it easier for reluctant students to con-
tribute to group discussions. Moreover, by restating
and elaborating on student comments, teachers can
pace the tempo of instruction to ensure that all stu-
dents have the time they need to understand and
digest proposed ideas. These actions also help to so-
cialize students; they gain practice listening to,
thinking about, and analyzing the comments of
their peers. Once students become aware that oth-
ers are interpreting and assigning significance to
what they are saying, they will show greater preci-
sion in expressing themselves and interest in shar-
ing their ideas (Rittenhouse 1998).

FINAL COMMENTS

Creating a learning community that supports and
encourages students’ authentic engagement in the
construction of mathematical knowledge depends
primarily upon the teacher’s own efforts and in-
structional behaviors. Certainly, learners’ percep-
tion of what the teacher values can determine the
extent to which they participate in and benefit from
discussions. If one hopes for students to develop the
mathematical and social dispositions to act as a com-
munity of learners, then teachers must both support
and model those ways of thinking and acting.
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